
Protecting endangered megafauna through
AI analysis of drone images in a
low-connectivity setting: a case study from
Namibia
Alice Hua1,*, Kevin Martin1,*, Yuzeng Shen1, Nicole Chen1,
Catherine Mou1, Maximilian Sterk2, Berend Reinhard3,
Friedrich F. Reinhard3, Stephen Lee4, Sky Alibhai5,6 and Zoe C. Jewell5,6

1 School of Information, University of California, Berkeley, Berkeley, California, USA
2 Department of Conservation Biology, University of Göttingen, Göttingen, Germany
3 Kuzikus Wildlife Reserve, Windhoek, Omaheke, Namibia
4 Army Research Office, Durham, North Carolina, USA
5 Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
6 WildTrack Inc., Durham, North Carolina, USA
* These authors contributed equally to this work.

ABSTRACT
Assessing the numbers and distribution of at-risk megafauna such as the black rhino
(Diceros bicornis) is key to effective conservation, yet such data are difficult to obtain.
Many current monitoring technologies are invasive to the target animals and
expensive. Satellite monitoring is emerging as a potential tool for very large animals
(e.g., elephant) but detecting smaller species requires higher resolution imaging.
Drones can deliver the required resolution and speed of monitoring, but challenges
remain in delivering automated monitoring systems where internet connectivity is
unreliable or absent. This study describes a model built to run on a drone to identify
in situ images of megafauna. Compared with previously reported studies, this
automated detection framework has a lower hardware cost and can function with a
reduced internet bandwidth requirement for local network communication.
It proposes the use of a Jetson Xavier NX, onboard a Parrot Anafi drone, connected
to the internet throughout the flight to deliver a lightweight web-based notification
system upon detection of the target species. The GPS location with the detected target
species images is sent using MQ Telemetry Transport (MQTT), a lightweight
messaging protocol using a publisher/subscriber architecture for IoT devices.
It provides reliable message delivery when internet connection is sporadic. We used a
YOLOv5l6 object detection architecture trained to identify a bounding box for one of
five objects of interest in a frame of video. At an intersection over union (IoU)
threshold of 0.5, our model achieved an average precision (AP) of 0.81 for black
rhino (our primary target) and 0.83 for giraffe (Giraffa giraffa). The model was less
successful at identifying the other smaller objects which were not our primary targets:
0.34, 0.25, and 0.42 for ostrich (Struthio camelus australis), springbok (Antidorcas
marsupialis) and human respectively. We used several techniques to optimize
performance and overcome the inherent challenge of small objects (animals) in the
data. Although our primary focus for the development of the model was rhino, we
included other species classes to emulate field conditions where many animal species

How to cite this article Hua A, Martin K, Shen Y, Chen N, Mou C, Sterk M, Reinhard B, Reinhard FF, Lee S, Alibhai S, Jewell ZC. 2022.
Protecting endangered megafauna through AI analysis of drone images in a low-connectivity setting: a case study from Namibia.
PeerJ 10:e13779 DOI 10.7717/peerj.13779

Submitted 22 November 2021
Accepted 3 July 2022
Published 3 August 2022

Corresponding authors
Kevin Martin,
kmart757@berkeley.edu
Zoe C. Jewell, info@wildtrack.org

Academic editor
Alison Nazareno

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj.13779

Copyright
2022 Hua et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.13779
mailto:kmart757@�berkeley.edu
mailto:info@�wildtrack.org
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.13779
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

are encountered, and thus reduce the false positive occurrence rate for rhino
detections. To constrain model overfitting, we trained the model on a dataset with
varied terrain, angle and lighting conditions and used data augmentation techniques
(i.e., GANs). We used image tiling and a relatively larger (i.e., higher resolution)
image input size to compensate for the difficulty faced in detecting small objects
when using YOLO. In this study, we demonstrated the potential of a drone-based AI
pipeline model to automate the detection of free-ranging megafauna detection in a
remote setting and create alerts to a wildlife manager in a relatively poorly connected
field environment.

Subjects Conservation Biology, Zoology, Computational Science, Data Mining and Machine
Learning
Keywords Rhino monitoring, AI, Drones, Namibia, Remote sensing, Non-invasive, Remote area
monitoring, YOLO, IoT devices, UAVs

INTRODUCTION
African megafauna are some of the most visible icons of the current decline in biodiversity
and as a consequence suffer poaching (illegal killing) for their body products including
horn (rhino), tusks (elephant) and flesh (large ungulates). These products have
considerable value. For example, rhino horn is used in Asian traditional medicine, and was
reported as selling for around $65,000 per kg (Witter & Satterfield, 2019). To disrupt
poaching, wildlife managers must deploy effective protection measures. This in turn
depends on the availability of reliable data on their numbers and distribution.

Traditional megafauna monitoring technologies are unable to cover large areas
effectively. Monitoring by small fixed-wing aircraft is expensive and potentially dangerous
in field conditions, being the primary cause of mortality in wildlife biologists (Sasse, 2003).
Monitoring using fitted instrumentation (e.g., collars, tags) is expensive, has poor longevity
and presents risks for the animals (Alibhai, Jewell & Towindo, 2001; Alibhai & Jewell,
2001a; Alibhai & Jewell, 2001b; Alibhai & Jewell, 2002). Traditional monitoring approaches
using well-equipped game scouts to patrol and observe individual rhinos regularly can
work very effectively when funding, expertise and logistics permit. Ground-based camera-
traps can also be effective at identifying animals that move past them but are frequently too
expensive to be deployed in sufficient numbers for a comprehensive survey. Moreover,
camera-traps require complex sampling protocols to be effective and provide poor
discrimination where individuals lack discriminating morphological features (Agha et al.,
2018). Other ground survey techniques such as the use of footprint identification (Jewell
et al., 2020) can provide low-cost and accurate survey results, identify individuals and be
integrated easily with anti-poaching patrols. However, they can also be time-consuming.
Thus, there is a need for low-cost, automated, landscape-scale monitoring for megafauna
protection.

Remote sensing techniques present one possible solution to this monitoring challenge.
Commercial satellites now have the resolution to identify African elephants in open habitat
at the landscape scale (Duporge et al., 2021) and whales (Guirado et al., 2019), but their

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 2/29

http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

resolution is not yet sufficient to accurately count smaller species of megafauna, for
example black rhino and large antelope.

In the last two decades, unmanned aerial vehicles (UAVs), or “drones” (also known as
remotely piloted aircraft systems, RPAS), have begun to assume an increasingly significant
role in wildlife conservation. Wich et al. (2021) provide an excellent general overview of
their current use in conservation. Depending on several factors, drones can also be used
without disruption to wildlife (Mulero-Pázmány et al., 2017; Borrelle & Fletcher, 2017).
They offer both reasonable ground coverage, and sufficient ground imaging resolution to
meet the requirements of local conservation managers. Drones also offer an opportunity to
collect data inexpensively and are readily accessible off-the-shelf. Some have onboard
computers to process data. Borrelle & Fletcher (2017) cataloged 11 studies from 2011 to
2015 that used them to investigate seabird habitats. Wich et al. (2015) demonstrated that
drones could be a useful tool in identifying Orang-utan (Pongo abelii) nests in Sumatra.
These studies have shown that the drones not only provided a cheaper way to gather the
data but resulted in less disturbance to the animals than an in-person survey.

Multiple studies have shown drones’ usefulness in protecting rhinos. Mulero-Pázmány
et al. (2014) demonstrated the efficacy of drones to inspect fence lines and locate poachers
and rhinos on a game park in South Africa. Penny et al. (2019) identified a possible use for
as well as a drawback of drones when they successfully used low flying drones to elicit
avoidance behavior from rhinos with the goal of keeping them away from highly poached
areas (such as near rivers, roads, and park boundaries). Park et al. (2015) developed a
machine learning algorithm to develop an optimal route coordinated for drones and
anti-poaching units given historical animal movements and poaching activities.

However, the rhino protection studies mentioned assumed that drones will return to
base after each flight where the footage will be manually reviewed. The process of curating
and compiling data from drone footage can be slow and it requires a trained eye. Mulero-
Pázmány et al. (2014) demonstrated an anti-poaching system based on drones taking still
photographs. In that study, it took around 45 min for a trained expert to process 500
pictures. If the drone is taking video at two frames per second (as it did in that article), then
each hour of processing would only be associated with 5.5 min of drone flight time. Clearly,
manual identification has scalability limits.

Other studies have also sought to automate the drone detection of animals. Tuia et al.
(2022) give a thorough overview of the state of the art in the area of automated wildlife
detection in general. Corcoran et al. (2021) reviewed studies published between 2015 and
2020 that used automated wildlife detection techniques for drone mounted platforms.
They determined that the technology had progressed far enough for automated detection
to be viable across a wide range of environments and species. They also concluded that
convolutional neural networks (CNN) (LeCun, Bengio & Hinton, 2015), when fine-tuned,
can be effective in multi-species detection in varied backgrounds. CNN models such as
Faster Region-based convolutional neural networks (Faster R-CNN) (Ren et al., 2017) and
You Only Look Once (YOLO) (Redmon et al., 2016) are the state-of-the-art for real-time
object detection tasks due to greater accuracy and speed over previously mentioned
methods (Corcoran et al., 2021).

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 3/29

http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

Running object detection on-board the drone reduces the amount of time needed for a
human to review footage, and can also give game managers real-time geo-locations of
animals and poachers. Use of UAVs with embedded hardware in pedestrian detection
(Zhang et al., 2019) and tracking (Smedt De, Hulens & Goedeme, 2015) paved the way for
other related applications such as animal detection. Until recently, animal real-time object
detection and alert had not been fully automated on-board drones due to limited
processing power, and limited internet connection in the field. Chalmers et al. (2019)
showed that streaming video live over the network is possible on some drones using
Real-time Messaging Protocol (RTMP). However, in many remote areas there is
insufficient cellular network connectivity to support this protocol. Lightweight messaging
architecture, such as MQTT, could address this problem by delivering only images of
detected animals instead of real time streaming. We offer a provisional, lightweight object
detection model as a demonstration of one approach that could satisfy the demand for
low-cost drones capable of operating with poor internet connectivity for real-time
detection of wildlife. Such drones would carry on-board hardware capable of inferring
high-resolution RGB imagery and providing real-time notifications to users.

METHODS
Terminology: refer to Appendix.

Data collection
This work was undertaken with permission from the National Commission on Research,
Science and Technology of Namibia. The majority of our data were collected from drones
flown at Namibia’s Kuzikus Wildlife Reserve. Kuzikus is an area of approximately 100
square km of predominantly mixed Acacia scrub and woodland on the western edge of the
Kalahari in Central Namibia (Fig. 1). As one of Namibia’s Black Rhino Custodianship
Programme properties, Kuzikus is home to black rhino, giraffe, eland and many other
threatened megafauna, affording the opportunity to collect the necessary datasets.
Although our primary megafauna focus in this study was rhino, we also collected images of
humans, giraffe, ostrich and springbok to provide species breadth for classification and to
help reduce rhino false positive detection rate.

We gathered images and 4k videos of rhino and other megafauna from two different
drones piloted by Kuzikus personnel. Consistent with Kuzikus policy, drones were flown at
an altitude which did not disturb the animals. Avoiding disturbance is dependent on many
factors including the sensitivity of the target species to aerial noise, wind speed and
direction, model of UAV and flight characteristics (Mulero-Pázmány et al., 2017; Tuia
et al., 2022). To collect still images we used a fixed-wing SenseFly eBeeX aircraft, equipped
with an Aeria X camera at 24 MP resolution, flown 70 m above ground level (AGL).
For video collection, we used a Skydio 2 quadcopter, equipped with a Sony IMX577 camera
at 12 MP, flown at 30 m AGL. We extracted still images from 4k video at sufficient
resolution for analysis (Table 1). We also used data from Kuzikus which was collected in
the framework of the semi-arid savannah habitat mapping project (SAVMAP).
The SAVMAP data was collected opportunistically over a 5-year period during a range of

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 4/29

http://dx.doi.org/10.7717/peerj.13779/supp-3
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

seasons from extreme dry to extreme wet conditions, and at different times of the day to
include all daylight contrast variations (Reinhard et al., 2015). The Kuzikus training dataset
includes images and videos with varying drone altitude AGL, camera capture angles and
background conditions. This variance in the training dataset lessens the risk of overfitting.

To further augment our dataset, we gathered data from other sources outside of
Kuzikus. They provide different angles (top-down or profile view), terrain and background
conditions (dry, wet, morning, late afternoon) and altitudes (30 m to 70 m AGL). A richer
dataset will result in a more generalizable model that can perform consistently across
different terrains, seasons and altitudes. We collected additional rhino drone footage in
person as well as from the live still cam at San Diego Safari Park (San Diego Zoo, 2021).
We also flew drones at a local park (Almansor Park located in California, USA) to get

Figure 1 A map of the Kuzikus Wildlife Reserve, Namibia. The Kuzikus Wildlife Reserve is approximately 100 square km. The east side is
predominantly Camel thorn (Acacia erioloba) and the west is predominantly mixed woodland (Acacia hebeclada and Acacia mellifera).

Full-size DOI: 10.7717/peerj.13779/fig-1

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 5/29

http://dx.doi.org/10.7717/peerj.13779/fig-1
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

additional human data. Lastly, we used open-access drone videos of rhinos on YouTube for
additional rhino data points. Table 1 details the sources of data used, the image size, the
count and altitude AGL at which data was collected. In addition, Fig. 2 shows examples of
drone images.

Data pre-processing
Before we could begin training our model, we needed to break the video in the dataset
down into individual frames and then label the images with bounding boxes. First, we used
the OpenCV and FFmpeg Python libraries to programmatically extract frames from video.
Then we used MakeSense.ai (Skalski, 2019) to manually label bounding boxes for the five
species classes, namely: rhino, giraffe, ostrich, springbok and human. We also adopted a
semi-manual quality control (QC) process where we used a Python script to automatically
process all our images and label files and output a QC image for each input image. We then
manually inspected the QC images for bounding box misalignments and relabeled as
needed. We aimed for an 80:20 split between training/validation sets. We kept each video
either entirely in the train or validation set, but not both to avoid data leakage where the
model simply memorized the feature space for the given video and thus predicted well on
the validation set because it had seen near identical frames (belong in the same video) in
the train set (Brownlee, 2020). Figure 3 shows the class distribution breakdown. We also
curated a test video from a holdout set of videos from the above sources. The video is 2:34
min long, contains 145 frames of five different target species captured at flying altitudes
ranging from 30–70 m AGL, under various angles, lighting and terrain conditions.

Offline augmentation
A larger dataset is generally known to increase performance of machine learning models.
To increase the size of the training dataset, we created additional synthetic images using
two methods, a type of Generative Adversarial Network (GAN) (Goodfellow et al., 2014)
and Adobe Photoshop. For the first type of synthetic images, we chose Single Natural

Table 1 Data sources.

Source Size (px) Count Altitude AGL (m)

Drone footage from Kuzikus 4,000 × 3,000 2,131 30–70

6,000 × 4,000

3,840 × 2,160

4,608 × 3,456

Drone footage from Youtube videos 1,280 × 720 667 10–20

1,415 × 588

1,920 × 1,080

1,518 × 1,113

Drone footage from Parrot Anafi 3,840 × 2,160 266 30–70

Still cam footage from San Diego Zoo 1,280 × 720 31 Ground level

Offline & Online augmented 501 × 282 192 & 14,534 Generated from 30–70 m drone images

Note:
The source of each data type, the size of images therein, the number of images and the altitude above ground level (AGL) at which they were collected.

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 6/29

http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

Image GAN (SinGAN) which learns on a single training image and generates similar
images with different object configurations (Shaham, Dekel &Michaeli, 2019). This type of
GAN model does not require many images to train itself. Many other types of GAN
training often require a large amount of training images. SinGAN learns the internal

Figure 2 Example drone images from Kuzikus, San Diego Zoo and Almansor Park. (A) Black rhino
from Kuzikus captured by senseFly eBeeX drone at 70 m AGL. (B) Black rhino from Kuzikus captured by
Skydio 2 quadcopter at 30 m AGL. (C) Giraffe from Kuzikus captured by senseFly eBeeX drone at 70 m
AGL. (D) Human from Kuzikus captured by Skydio 2 quadcopter at 30 m AGL. (E) Indian rhino from an
open-access Youtube video. (F) Southern White rhino from San Diego Zoo captured by open-access still
cam. (G) Giraffe from Kuzikus captured by senseFly eBeeX at 70 m AGL. (H) Human from Almansor
Park captured by Parrot Anafi at 30 m AGL. Credits: Kuzikus Wildlife Reserve (A, B, C, D & G); www.
YouTube.com, open-source (E). San Diego Zoo (F); Almansor Park, CA (H).

Full-size DOI: 10.7717/peerj.13779/fig-2

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 7/29

https://www.YouTube.com
https://www.YouTube.com
http://dx.doi.org/10.7717/peerj.13779/fig-2
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

statistics of image patches, rather than the whole image as in a conventional GAN. It then
generates patches that when combined, produce realistic images while maintaining the
patch statistics. We used it to generate new frames on rhinos (82 images) and ostriches (44
images) on similar backgrounds to an original drone image. These new synthetic images
were manually labeled and added to the training data. Figure 4 shows SinGAN examples of
synthetic images. Our second type of synthetic images are background images. We used
Photoshop to remove target objects from images to generate background images. It is
recommended to have at least 10% background images for best training results (Jocher,
2021). Figure 5 shows Photoshop examples of object removal for background images.

Online data augmentation
By using online data augmentation, we were able to increase the number and variety of
training images that the model was exposed to without having to do additional labeling or
manual manipulation. This helped the model generalize better to unseen data and avoid
overfitting. To do this, we automatically transformed existing images using the
Albumentations library (Buslaev et al., 2020) in the model training pipeline. The specific
techniques used included horizontal and vertical reflections of a portion of the images
(random flipping), applying a slight blurring effect (blurring), applying a transparency
effect to images and layering them (mixup) (Zhang et al., 2017) and using a 2 by 2 array of
images for input (mosaic) (Bochkovskiy, Wang & Liao, 2020). Figure 6 shows an example
of these online augmentation techniques. We observed an increased model performance
on the validation set as a result of these combined augmentations. Furthermore, we
implemented a third type of image augmentation called tiling. We describe our
implementation of tiling below.

Figure 3 The class distribution for all the annotated frames from all videos. (A) The class distribution
for five classes. (B) Class distribution into training and validation sets.

Full-size DOI: 10.7717/peerj.13779/fig-3

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 8/29

http://dx.doi.org/10.7717/peerj.13779/fig-3
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

Tiling
A significant proportion of images in our dataset suffered from a common issue known as
the “small object detection problem” where objects of interest were small relative to the size
of the image. We addressed this by deploying tiling on the higher resolution training
images of our target classes. In our study we did not implement tiling during the inference
phase.

Tiling is a process of breaking up a large image into smaller pieces, then running those
pieces through the model. It is a widely used technique in computer vision. DuPorge et al.
(2021) employed this technique in their study detecting elephants from high resolution
satellite images. Bounding boxes in these smaller tiled images are retained and scaled
accordingly so that the object of interest remains boxed. Generally, tiles are overlapped on
the image so that objects at the border between tiles are kept intact. This solves the small

Figure 4 Offline augmentation using SinGAN examples. (A) Original images. (B) SinGAN images of
ostrich and rhinos. Full-size DOI: 10.7717/peerj.13779/fig-4

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 9/29

http://dx.doi.org/10.7717/peerj.13779/fig-4
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

Figure 5 Offline augmentation using photoshop. (A) Original image. (B) Photoshop image where the object of interest is removed. Credit:
Kuzikus Wildlife Reserve. Full-size DOI: 10.7717/peerj.13779/fig-5

Figure 6 Online augmentations using the Albumentations library. A training image that utilizes the
mosaic and flip augmentations. Note that all images are flipped about their X-axis and different base
images are arranged next to each other to form the single input image. Label 0: rhino class; 1s: giraffe
class; 2s: ostrich class; 3s: springbok class; 4s: human class. Full-size DOI: 10.7717/peerj.13779/fig-6

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 10/29

http://dx.doi.org/10.7717/peerj.13779/fig-5
http://dx.doi.org/10.7717/peerj.13779/fig-6
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

object problem because the smaller tiled images do not need to be compressed to be fed
into the model and thus, they maintain their full fidelity. The higher resolution images,
when tiled, contain more detailed information and training on them results in a model that
makes more accurate predictions (Růžička & Franchetti, 2018).

In this study we implemented tiling during the training phase and applied it to our
high-resolution inputs (any images bigger than 1,280 px). This allowed us to significantly
augment the dataset. First, we considered that a high quality 720p video frame comes in at
720 × 1,280 px in size. With such video quality, small objects would still likely be visible
and so we set our object detection model to take in images at 1,280 px. We then tiled our
images at 1,280 × 1,280 px with a 320 px overlap between adjacent tiles (Fig. 7). We used a

Figure 7 Augmentation using tiling. (A) Tiling process schematic. (B) Example of a tiled springbok
image (original image 3,840 × 2,160 px). Full-size DOI: 10.7717/peerj.13779/fig-7

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 11/29

http://dx.doi.org/10.7717/peerj.13779/fig-7
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

one quarter tile overlap to help prevent objects being lost at the boundary between tiles
(Ünel, Özkalayci & Çiğla, 2019). Our tiling also facilitated the partitioning of some of the
ultra high-definition images in our dataset (some were 4,000 px wide) yet maintained small
objects at a reasonable size.

Although our image sizes varied considerably, from 1,280 to 6,000 px width, the
bounding boxes tended to be all clustered around the same size. The majority of bounding
boxes (~99%) were under 200 px. The uniform size of the bounding boxes gave us
confidence that using a uniform pixel size for the tiles was appropriate. The tiles were large
enough that all bounding boxes were captured by one of the tiles in overlapping regions.
For example, if we had used a tile size smaller than around 200 px then for our larger
bounding boxes each tile might capture only a corner of the rhino and potentially none
would have a large enough segment of the bounding box for it to be a complete image
usable for training.

In cases where objects were partially cut off by the tile, we decided to only keep the
frame for training if more than 50% of the bounding box for the target object was
contained on our tile. This prevented potentially irrelevant bounding boxes with limited or
no info from appearing at the edges of the tiles (Fig. 7). To implement the tiling, we heavily
modified a script from GitHub by Neskorozhenyi (2021).

Object detection model
Convolutional Neural Nets (CNNs) are state of the art machine learning models often used
in computer vision (CV). In the context of CV, a CNNmodel takes images as input, learns
their features (shapes, textures, edges, etc.) using multiple layers (convolution, pooling,
Relu, etc.) and classifies the images. Feature learning involves using different filter (kernel)
types and performing convolutional computations on the image pixels (Goodfellow, Bengio
& Courville, 2016). In general, CNN-based object detection methods can be further divided
into two main groups: two-stage and one-stage. Two-stage detectors first use a network
that predicts many regions where bounding boxes are likely to be in an image, then it
passes those results off to the actual convolutional network that determines if any of the
proposed regions are the object of interest. Faster R-CNNs (Ren et al., 2017) are currently
one of the most widely used architectures for these two stage detectors. One-stage detectors
put the entire image through a single network and predict bounding boxes and object
classes at the same time. The YOLO family of models (Redmon et al., 2016; Redmon &
Farhadi, 2018; Bochkovskiy, Wang & Liao, 2020; Jocher et al., 2020) are among the most
widely used one-stage detectors. There is a tradeoff between using these models. Two-stage
detectors tend to be more accurate but slower while one-stage detectors have lower
accuracy but faster performance times (Redmon & Farhadi, 2018).

We utilized YOLO as our real-time object detection model of choice because it has the
fastest inference speed, which is essential for real-time video inference on a relatively low
powered edge device. The original YOLO paper (Redmon et al., 2016) suggests that YOLO
is relatively robust to domain shifts. The authors found that it outperformed Faster R-CNN
models in terms of both accuracy and speed when both models were trained on
photographic data and used to detect objects in paintings and other artwork. They suggest

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 12/29

http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

that this robustness is due to the fact that YOLO sees relative location of objects and their
shapes rather than just a small region. This is important because our data comes from a
variety of sources where domain shift is a potential concern; we want the model to perform
well if the target is at an angle or if the background and lighting are different than the
training data.

For the specific implementation of the YOLO algorithm, we used YOLOv5 rather than
the earlier versions of YOLO. This was due to YOLOv5’s smaller model sizes, shorter
training and inference duration, the flexibility to utilize pre-built optimized models based
on image size (Jocher et al., 2020). For example, the YOLOv5l6 architecture, which we
used, includes more hidden layers than the YOLOv5s baseline model. The YOLOv5l6
architecture also contains an additional output layer which predicts features at a different
scale than the baseline YOLOv5s. These combined features make it work well when
ingesting larger images. This implementation also makes it very easy to build even lighter
weight models which use half-precision (16-bit floating point or half-precision weights)
(Solawetz, 2020). Half-precision was one of the factors that allowed us to produce speedier
inference by using less memory for computation. This allows our model to be lighter, and
more portable on the edge device where computation resources are limited. We posit that
YOLOv5 used in combination with a lightweight messaging component is suitable for our
use case of limited network connectivity on the field.

The YOLOv5 model architecture consists of the backbone, neck and head.
The backbone is the part of the network used to extract important features such as edges
from the given input image. It uses a cross stage partial network (Wang et al., 2020) for this
part of the model. The basic extracted features are then sent to the model neck, which is
used to generate more elaborate features. YOLOv5 uses a path aggregation network
(PANet) (Liu et al., 2018) for the model neck. This architecture is based on feature pyramid
networks (Lin et al., 2017a), which help the model to generalize and identify the same
object at different sizes and scales. The model head is mainly used to perform the final
detection by applying anchor boxes on features and generating final output vectors with
class probabilities, objectness scores, and bounding boxes (Rajput, 2020). There is no
YOLOv5 paper to date, but we refer to this detailed series of diagrams of the YOLOv5
architecture, which interested parties can inspect (Laughing-q, 2021). We use the default
settings for YOLOv5, with stochastic gradient descent (SGD) (Kiefer &Wolfowitz, 1952) as
the optimizer, a predefined set of activation functions and BCEWithLogitsLoss from the
Pytorch library (Paszke et al., 2019) for the loss function.

We performed model training on EC2 instances from Amazon Web Services (Amazon
Web Services, 2021). We utilized different levels of instances (G and P instances, with
VCPU utilization ranging from 16 to 96) during the course of model development due to
progressive increases in model complexity and dataset size. We iterated over 8 models
during our model development process. Our final model was a YOLOv5l6 trained from
scratch (without pre-trained weights) for 200 epochs, with a batch size of 32, image size of
1,280. It was trained on a 96 VCPU 8-GPU P-instance from AWS. The model’s best set of
weights was used for inference on the hold out test set. Inference was performed on the
Jetson NX edge device.

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 13/29

http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

It is important to note that while the model training process was compute-intensive, the
model inference process was lightweight and was able to be run on our small Jetson NX
edge device. Model training takes many orders of magnitude more compute power than
inference. Training requires running the model many times over the training corpus while
applying on-line image transformations to incoming images and back propagating the
results of each run up the model. This process applies the losses of each run to calculate
new model weights and improve performance. The output of training is a set of the best
model weights. These weights only need to be produced one time from the model training
process and are light enough to be run on a much smaller device to produce predictions at
inference time.

Evaluation metric
Our primary evaluation metrics for the model were the average precision (AP) by class and
the mean average precision (mAP) for the model overall. These are the most used metrics
used to assess object detection model performance. The ability to objectively compare our
model results to previous studies allowed us to iterate and benchmark our model
development process accordingly. We were particularly interested in increasing the AP of
the rhino class as our main object of interest. The performance of rhino and human classes
were prioritized over other classes during our model development. This was due to the
assumption that our model would be used in the anti-poaching context.

Deriving the AP per class required defining our intersection over union (IoU) threshold.
The IoU computes the area of intersection divided by the area of the union between the
true bounding box and the predicted bounding box. An IoU of one indicates that the
bounding boxes overlap perfectly. We used the IoU threshold of 0.50 (the default threshold
for YOLOv5) when reporting our model. In this case detections where positive results are
above the IoU threshold are classified as true positives, and those below the threshold are
false positives (assuming that the class label is correct). Based on the true positives (TP)
and false positives (FP) and false negatives (FN), we derived the precision and recall for all
objects to construct the precision recall curve (Fig. 8).

Model development
For our initial modeling, we used three classes, rhino, human and other animals.
Performance was increased when we added additional classes (rhino, giraffe, ostrich,
springbok, human) in the next iteration. Our baseline model used the lightest YOLOv5s
architecture with an input image size of 992 × 992 px. We did not use offline data
augmentation in the baseline model. Final model improvements involved adding synthetic
images from SinGAN and Photoshop to the dataset to increase the examples for the rhino,
ostrich and background images. We also used additional forms of data augmentation and
regularization parameters described above such as mixup, mosaic augmentation and label
smoothing (Szegedy et al., 2016). We then tiled images larger than 1,280 px in size and
added the tiles to the training dataset. Lastly, the final model used the larger YOLOv5l6
architecture, which ingests images at 1,280 px. The larger input size in our final model

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 14/29

http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

allowed us to optimize for small object detection by minimizing the loss in feature space
when an ingested large image (e.g., 6,000 × 4,000 px) was scaled down by the model.

Edge implementation
Here we describe a proof-of-concept implementation, where a Jetson Xavier NX is
onboard a Parrot Anafi drone and connected to the internet throughout the flight (noted in
Discussion). In our study, we did not have the powered edge device attached to the drone
itself and running in the field due to budget constraints. We did, however, run model
inference on the hold-out test video on our edge device. The device can be mounted on the
drone and attached to a power source (Zhang et al., 2019).

In a full implementation where the edge device is mounted on the drone, our pipeline
processes the live stream coming from the drone’s camera. In our implementation, the
Jetson NX breaks the video into frames, then carries out object detection using the weights
and hyperparameters of our best model. We used half-precision weights to speed up the
inference time as the model predicts bounding boxes for detected object classes. For each
positive detection in each frame, the Jetson NX gathers the drone’s latitude and longitude
for the predicted class, the frame with the predicted bounding box(es) and the confidence
score. We bundle these metadata for every valid bounding box within each frame. We send
them together to avoid mismatching the predicted class and the frame or location that it
corresponds to. Only frames with over 50% confidence score are sent to the cloud hosted

Figure 8 Precision-recall curve on the validation set. The best model using both offline and online
techniques yielded a recall of at least 80% for rhino and giraffe classes where their precision rates were
highest. Other classes did not perform as well, particularly springbok.

Full-size DOI: 10.7717/peerj.13779/fig-8

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 15/29

http://dx.doi.org/10.7717/peerj.13779/fig-8
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

web app. Note that we generated random coordinates in our data due to rhino safety and
privacy concerns, but in reality this would come from the drone’s onboard GPS unit.

The message communication is facilitated by MQTT, a lightweight messaging protocol
using a publisher/subscriber architecture for IoT devices. We sent our messages with a
quality-of-service score of 1 to ensure the message is delivered at least once (MQTT, 2021).
The publisher lives on the Jetson, where it publishes the message bundles generated by our
inference process. The subscriber lives on the cloud and listens to these bundled messages,
decodes them, and updates our web app. Our web app is hosted by Flask, which lives on a
cloud server.

The map within the web app is rendered using Folium, a library used for visualizing
geospatial data (Story, 2013). It displays the corresponding icon of the predicted class
(rhino, ostrich, giraffe, springbok, human) on the broadcasted location. The user can then
click on the icon to see a popup, which contains the frame with the predicted bounding box
around the identified object together with its confidence score. Each time the user refreshes
the page, the map is updated with the latest result pushed from the Jetson during inference
(Fig. 9).

Project pipeline
Figure 10 shows the pipeline schematic from data collection to edge deployment.

RESULTS
Our final model achieved an AP of 0.81 for rhino, 0.83 on giraffe, 0.34 on ostrich, 0.25 on
springbok and 0.42 on human for an overall model mAP of 0.53 (Table 2; Fig. 8) on the
original un-tiled validation dataset. The overall model mAP score was pulled down by
having lower AP scores for the smaller target species. We included the smaller targets
because they improved the performance of the main target classes (rhino and human).
Figure 8 shows the precision-recall curve and Fig. 11 shows the confusion matrix for our
final model. The rhino and giraffe classes were predicted more accurately than other
classes. Springbok, ostrich and human classes were often predicted as background.

Due to a limited dataset, we combined both high and low altitude images in our training
set. We saw that inferring on higher altitude images (70 m AGL) resulted in lower mAP
scores, and tiling improved the performance significantly as explained in the methods and
discussion sections. The human and springbok classes were most challenging to detect
(lowest APs) because of the combined altitudes (high and low) in the validation data; they
were also smaller in size compared to rhino, giraffe and ostrich and we had a limited
number of images for each type of altitude. It is important to note that the image split
between the train and validation sets for each class is uneven with regard to the number of
high vs low altitude images per class. This is because we did not want individual videos to
split up in between train, validation and test (see ‘Data pre-processing’ section). In total, we
only had 271 images of ostrich and 215 images of springbok as compared to 801 images of
rhino and 475 images of giraffe. Table 3 shows the total number of images per class.

Although we increased the human class images significantly with the additional drone
footage at the Almansor Park (for a total of 1,001 images), its highest AP was still below

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 16/29

http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

0.50. We observed that the additional data source provides images of a wet green
environment, which is very different from human images at Kuzikus (Fig. 2). By keeping
the videos separate in either split, our validation set for the human class ended up with
more high altitude and dry background images. Figure 12 shows inferred test images at
about 70 m AGL and 40 m AGL, across two different terrain conditions. We had more
success with the rhino class potentially due to more even splits of image types and the fact
that rhinos are much bigger than humans.

Overall, our results indicated that larger models with larger image size input took
significantly longer to train but yielded higher accuracy. They were still able to be run on
the edge device. Model performance was increased by utilizing online augmentation
techniques such as mixup, etc,. and offline augmentation techniques such as tiling, GAN
and photoshop. Incorporating specific species, as opposed to “other animals”, improved
model performance. Our last model used tiling; this doubled the training dataset size and
by far, provided the most noticeable performance boost across four out of the five classes.

Figure 9 Edge notification system. Sent image of low altitude (30 to 40 m AGL) rhino class. This figure illustrates an arbitrary location. Credit:
OpenStreetMaps. Full-size DOI: 10.7717/peerj.13779/fig-9

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 17/29

http://dx.doi.org/10.7717/peerj.13779/fig-9
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

DISCUSSION
How our results compared with other similar studies
When we consider our results in comparison to other similar studies of drone-based
animal object detection models by Chalmers et al. (2019) and Eikelboom et al. (2019), we
see that our model performance in terms of AP for objects of interest is comparable to their
results. However, our model’s inference speed is orders of magnitude faster and it is able to
be run on a lightweight edge device, whereas the other two comparable studies ran their
models on more expensive hardware.

The study by Chalmers et al. (2019) is the most comparable of the two. Their model
achieved an overall mAP of 0.83 at an IoU of 0.5. They used two classes, rhinos and cars.
Given that our focus species was rhino, our most comparable result would be the rhino AP

Figure 10 A pipeline schematic from data collection to edge deployment. Data collected by a drone are labeled, subjected to offline data aug-
mentation, stored in the cloud, subjected to online data augmentation using tiling or Albumentations, and trained by YOLOv5 on the drone.
The inference is passed through a messaging protocol to a cloud web app and then to a user on the ground.

Full-size DOI: 10.7717/peerj.13779/fig-10

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 18/29

http://dx.doi.org/10.7717/peerj.13779/fig-10
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

of 0.81. Their target classes were of similar size to the rhino and the giraffe in our model
but larger than the ostrich, springbok and human. Thus, they might not have suffered from
the same small object problem that we encountered. Furthermore, Chalmer’s model
evaluation was done on one type of terrain (in RGB and in thermal images), not varied
terrain like in our study. If we were to reduce the number of classes and keep the dataset to
one specific terrain, then we would expect to have higher mAP scores although this same
model would perform poorly in the field where there are many different species and terrain
conditions.

Chalmers employed a Faster R-CNN architecture, which ran inference on video
streamed from their drone to a laptop. Their model used transfer learning pre-trained on
the COCO dataset, which helped when they had a smaller dataset, whereas we trained our
model from scratch. In terms of speed and resources, their model was able to operate at
two frames per second (fps) on an Nvidia Quadro RTX 8000 GPU. This hardware costs
around $10,000. Although not a direct comparison, due to the difference in target species
and dataset composition, in contrast our YOLOv5l6 can potentially achieve comparable
results while running on cheaper hardware (Jetson NX has an MSRP of $400) and doing
inference faster, at 30 fps.

Eikelboom et al. (2019) trained their model to identify zebra, giraffe and elephant. They
achieved an overall mAP of 0.77 with AP 0.81 on elephant, their highest performing class.
Similar to Chalmers et al. (2019), their model had an easier time detecting objects because
they were detecting larger objects, which did not suffer acutely from the small object
problem. They also had more images per class (1,319 for elephant, 1,109 for giraffe and
1,877 for zebra compared to our images per class listed in Table 3). They also used a

Table 2 Data training results.

Model name Class Model GAN Online Augs Img. size Tiles Data set size

3-Class
Baseline

Rhino (R)
Other (O)
Human (H)

YOLOv5s None hsv_s 0.7
mixup 0.0
iou_t 0.2
lab_smooth NA

992 None 2,276 62.7 (R)
36.8 (O)
23.2 (H)

5-Class
Baseline

Rhino (R)
Giraffe (G)
Ostrich (O)
Springbok (S)
Human (H)

YOLOv5s None 992 None 2,276 67.7 (R)
66.7 (G)
35.8 (O)
7.34 (S)
20.2 (H)

Final Model YOLOv5l6 Yes hsv_s 0.0
mixup 0.5
lab_smooth 0.1
A.HorizontalFlip
A.RandomRotate90
A.VerticalFlip
A.MotionBlur
A.MedianBlur
A.GaussNoise

1,280 Tiles: 4,390
Tile size: 1,280

7,409 81.0 (R)
82.6 (G)
33.6 (O)
24.6 (S)
41.8 (H)

Note:
Model name (three or five classes), class names (species), the YOLO model that trained them, whether GAN was used, online augmentations used, image sizes, tiling,
dataset size, the accuracy achieved using average precision metrics AP at IoU of 0.5. Our base model is three-class (rhino, human, other), our second and final models are
five-class (rhino, giraffe, ostrich, springbok and human).

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 19/29

http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

slightly more lenient IoU threshold of 0.3. Their lower IoU threshold meant that the
predicted bounding boxes only needed to overlap 30% of the ground truth boxes to be
considered true positives, compared to 50%, our default IoU threshold. Our most
competitive AP to their 0.81 AP for the elephant class was our rhino class of 0.81 AP. Their

Figure 11 Confusion matrix for the five classes on the validation set. The main target class, rhino, can
be predicted accurately 81% of the time. Giraffe class has a similar accuracy. Smaller-sized classes such as
ostrich, springbok and human are misidentified as background 50% of the time on this validation set.

Full-size DOI: 10.7717/peerj.13779/fig-11

Table 3 The number of images per species and their corresponding AP@0.5 in the validation set.

Species Frame count AP@0.5

Rhino 801 81

Giraffe 475 82.6

Ostrich 271 33.6

Springbok 215 24.6

Human 1,001 41.8

Note:
The frame count provides the number of still images extracted from the videos for each species. The AP@0.5 is the
average precision for each species at an IoU threshold of 0.5.

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 20/29

http://dx.doi.org/10.7717/peerj.13779/fig-11
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

model was a RetinaNet (Lin et al., 2017b) detector with longer inference time of 1.5 s per
image (0.67 fps) whereas our Jetson can infer 30 images per second.

Our model scored highly in terms of performance and resource costs. We were able to
achieve faster inference time at 30 fps (15 times faster than the fastest of the two models
being compared) using a less powerful device. There are several factors affecting this speed
increase. Firstly, the YOLO model is lightweight, this alone provides a considerably faster
inference time than either of the models used in the comparable studies. Secondly, we used
half-precision weights (16 bit floating point numbers) for our model, which speeds up
inference time as discussed in the Object Detection Model section. Lastly, we must
acknowledge the rapid improvement of technology in the computer vision space. Since
these papers were published, YOLOv4 and YOLOv5 have been made available, both of
which perform significantly better than their predecessors. The hardware has also
advanced. The GPU that device that we are using did not become available until March of

Figure 12 Test set inference result examples. (A) Black rhino from Kuzikus Wildlife Reserve collected
by a fixed-wing drone at 70 m AGL on a dry substrate (B) Southern white rhino and humans from the
San Diego Safari Park collected by a quadcopter at 40 m AGL on a moist substrate. Credit: Kuzikus
Wildlife Reserve (A); San Diego Safari Park (B). Full-size DOI: 10.7717/peerj.13779/fig-12

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 21/29

http://dx.doi.org/10.7717/peerj.13779/fig-12
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

2020, after these papers were published. By combining these advances in technology, our
study has improved both cost and speed of wildlife object detection systems.

Choice of performance metrics
We chose the evaluation metric AP for our model since it is most commonly used in object
detection models. Other metrics such as F2 are used by some researchers to assess
performance of detection rates depending on what they prioritize. F2 favors higher recall
and forgives lower precision. We chose to report the most used IoU threshold of 0.50 while
other researchers have used reporting thresholds as low as 0. Counting the accurate
detections from an IoU of 0 allows these researchers to compare between their CNNmodel
and manual human detection against their ground truth labels with a priority of recall over
precision (Duporge et al., 2021). We avoided a very low IoU threshold for reporting. There
are potential degenerate cases where a model does not detect the visual features of the
target object but simply returns bounding boxes based on features near where such objects
tend to be found.

Dataset composition and training strategy
We performed class selection deliberately based on the idea that the model would be
primarily used for rhino detection. Although rhino detection provided a focus of the
project, we included multiple classes of megafauna because doing so offered better rhino
detection. We discuss this in the Model Development section. We also used background
images for up to 10% of the training dataset to reduce false positives.

We addressed a relative paucity of data by using data augmentation techniques but were
also constrained by the exponential increase in the amount of compute resources required
for GAN and model training. Generating GAN images requires more computing resources
in addition to computing resources needed for model training. We also noted that
generating GAN images of small objects often did not result in quality outputs, as the GAN
generators had a relatively small feature space to learn from. Instead, we observed a greater
improvement with tiling.

Although not used in this study, the model performance could be further boosted by
implementing tiling during the inference stage (Ünel, Özkalayci & Çiğla, 2019).
Kellenberger, Marcos & Tuia (2018) used curriculum learning, where models are exposed
to more difficult training examples only after learning easier ones. In their study this
dramatically reduced the number of false positive detections. Another technique that we
did not explore but has been used by other researchers in the field is transfer learning
(Chalmers et al., 2019; Kellenberger, Marcos & Tuia, 2018). This technique helps
compensate for a lack of training data by starting out with a model feature extractor
(backbone) that has been trained on a larger dataset such as COCO instead of starting out
from scratch.

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 22/29

http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

Accommodating internet connectivity limitations for real-time
inference
One considerable barrier to full implementation was the lack of reliable cellular
connectivity in the area that the drone would be deployed. To accommodate our internet
connectivity limitations, we opted for a machine learning model that runs locally and
sends lightweight notifications to a message queue rather than streaming our video to the
cloud for inference. The Jetson NX edge device performs inference on the drone during
flight and only sends the detected video frame to the cloud. This avoids the high network
cost from sending the entire live stream over a network and makes inference possible when
network connectivity is unreliable.

In this study, we were able to run the inference model on the drone as described in our
Results section, but we did not actually mount it on a drone due to budgetary constraints.
The full implementation would mount the Jetson on a drone with a dedicated power
source and cellular modem to communicate out results; these are both relatively
inexpensive pieces of commodity hardware. Zhang et al. (2019) have already demonstrated
the feasibility of attaching the Jetson to a drone for use in real-time inference.

A potential issue that we noticed in our test implementation is that the number of
notifications can become overwhelming when an object is spotted. Running at 30 fps
inference speed, we had enough data coming in that the web app we developed to show
animal locations became overloaded. This volume of notifications would also overwhelm a
human operator. To combat this, we recommend reducing the number of frames that are
used to generate notifications. This rate could be adjusted based on the flying speed and
height of the drone and the camera’s field of focus such that each square meter of ground
appears in multiple frames. This would give the model multiple attempts to capture a given
object of interest without sending out a gratuitous number of notifications for every object
that passes through the drone’s field of view.Mulero-Pázmány et al. (2014) present a series
of equations to help determine the appropriate frame rate.

Avoiding drone disturbance to wildlife
There is ongoing debate about the appropriate altitude AGL to fly drones for conservation
(Mulero-Pázmány et al., 2014; Mulero-Pázmány et al., 2017; Chalmers et al., 2019).
Any disturbance to animals will depend on several factors including species sensitivity, the
noise generated by the specific aircraft, wind and air pressure variables, direction of
approach, etc. Flying lower will result in higher quality images and greater detection rates
with the drawback that it potentially disturbs the animals and has less ground coverage per
flight. Flying higher will cover more ground and is less disruptive to the animals but the
footage captured results in the animals being small objects, making accurate detection
more challenging. Based on our experience at Kuzikus, we propose that a flight altitude of
30 to 40 m AGL is a suitable compromise between these two extremes for the purpose of
rhino detection. In the future, we may be able to further reduce disturbance to wildlife by
carrying out remote sensing with higher-flying drones equipped with higher-resolution
cameras.

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 23/29

http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

We hypothesize that specialized models for different flight types (based on altitude
AGL) would allow the respective models to generalize better to their captured imagery, and
lead to better model performance. Even though we had distinct data sources from fixed
wing (high altitude) and quadcopter (lower altitude) drones, we did not test this hypothesis
due to the limited quantity of images within our dataset for each altitude. Training
individual models specifically for high and low altitudes would likely help the model learn
the task more efficiently and perform better than a model that combines a range of
altitudes with a limited dataset.

CONCLUSIONS
Overall, we have demonstrated the successful development of a remote sensing technique
applicable for monitoring wildlife in low resource settings, where internet access is
unreliable and the ability to collect large datasets may be limited. Our system is based on a
fast and lightweight object detection model, which uses a suite of data augmentations to
compensate for a relatively small training dataset. The model performs comparably to
other published studies in terms of accuracy while having inference times that are an order
of magnitude faster and running on cheaper hardware. We have also demonstrated a
proof-of-concept edge implementation of a pipeline with a web app to guide potential
real-world deployment. The combination of our model and implementation is ideal for
low resource settings because a small edge device would be able to contain the lightweight
YOLO model that can rapidly ingest and perform inference on captured imagery as the
drone flies over large areas. Wildlife managers can be notified of animal locations without
the need to have a human reviewing all the footage or waiting until the flight is finished to
upload video to an object detector.

For researchers and wildlife managers interested in developing similar real-time wildlife
detection systems on drones, we have shown that modern hardware and open-source
software are capable of the task in an on-board edge device. With small adjustments, the
same basic system could be adapted to other contexts. For example, Eikelboom et al. (2019)
discussed methods to get accurate population estimates from object detection models run
on drone footage. Further work could also focus on how to integrate this type of pipeline
into a whole system. For example, determining the optimal number of drones to fly, the
schedule to fly them, and the optimal flight path to maximize scarce resources on a wildlife
preserve is a non-trivial problem. It depends on local conditions, the animal of concern,
and whether the goal is anti-poaching, animal census, or some other tasks. The study by
Park et al. (2015) covered some of these issues at a high level in the poaching context. Even
when the context is determined, many low-level considerations around personnel training
and operations need to be resolved before wildlife managers can implement such a system
in practice.

Drones have already demonstrated their huge potential for monitoring a range of
wildlife, but, however seductive, new technology for wildlife monitoring must always be
assessed in terms of practical application on the ground. For example, consideration must
be given to unintended use. An ‘eye in the sky’ in the hands of poachers could put rhino
and other endangered species at increased risk. Effective wildlife security depends on a

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 24/29

http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

strongly motivated local community. Well-equipped and trained park rangers have always
been the foundation of good rhino protection, and this remains true even in the presence
of the most advanced remote sensing techniques.

ACKNOWLEDGEMENTS
We thank Darragh Hanley, Robert DesAulniers, Alex Hughes and Paul Laskowski from
the UC Berkeley School of Information for their help in reading through the early
drafts of this manuscript. We thank Andrea Blindenbacher and Brock Ryder of Drones for
Earth for help with data capture in Namibia. We thank Skydio and SenseFly for providing
drones for data capture at the field site. We thank Jim Haigwood from SDZ Safari Park
for granting permission to collect rhino data from our Anafi drone. We thank UC Berkeley
School of Information for their AWS Credit. We thank the Kuzikus Wildlife Reserve
management team for providing logistical help at the data collection site, and the Ministry
of Environment and Tourism of Namibia for permission to undertake this work. We thank
JMP software for their generous logistical support.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Sky Alibhai and Zoe C. Jewell are employed by WildTrack Inc. Zoe Jewell and Sky Alibhai
are Principal Research Associates JMP Division, SAS.

Author Contributions
� Alice Hua conceived and designed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

� Kevin Martin conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

� Yuzeng Shen conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

� Nicole Chen conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

� Catherine Mou conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

� Maximilian Sterk performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

� Berend Reinhard performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 25/29

http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

� Friedrich F. Reinhard performed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

� Stephen Lee analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

� Sky Alibhai conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

� Zoe C. Jewell conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the article, and approved the final
draft.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Permission was granted by the National Commission on Research, Science and
Technology of Namibia for the work undertaken at Kuzikus Wildlife.

Data Availability
The following information was supplied regarding data availability:

The data is available at Zenodo: Alice Hua, Kevin Martin, Zoe C Jewell, Eugene Shen,
Nicole Chen, Catherine Mou, Maximilian Sterk, Berend Reinhard, Friedrich Reinhard,
Stephen Lee, & Sky Alibhai. (2021). Megafauna Identification Training Images. https://doi.
org/10.5281/zenodo.6386809.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.13779#supplemental-information.

REFERENCES
Agha M, Batter T, Bolas EC, Collins AC, Gomes da Rocha D, Monteza-Moreno CM,

Preckler-Quisquater S, Sollmann R. 2018. A review of wildlife camera trapping trends across
Africa. African Journal of Ecology 56(4):694–701 DOI 10.1111/aje.12565.

Alibhai SK, Jewell ZC. 2001a. Hot under the collar: the failure of radio-collars on black rhino
(Diceros bicornis). Oryx 35(4):284–288 DOI 10.1046/j.1365-3008.2001.00196.x.

Alibhai SK, Jewell ZC. 2001b. Forum: reply to du Toit. Oryx 35(4):291
DOI 10.1046/j.1365-3008.2001.00198.x.

Alibhai SK, Jewell ZC. 2002. Response to Atkinson, du Toit, Radcliffe, Dooley and Kock. In ‘The
cost of information: should black rhinos be immobilized?’. Journal of Zoology 258(3):279–280
DOI 10.1017/S0952836902211395.

Alibhai SK, Jewell ZC, Towindo SS. 2001. The effects of immobilization on fertility in female black
rhino (Diceros bicornis). Journal of Zoology 253(3):333–345 DOI 10.1017/S0952836901000309.

Amazon Web Services. 2021. Amazon EC2 instance types. Available at https://aws.amazon.com/
ec2/instance-types (accessed 2 August 2021).

Bochkovskiy A, Wang CY, Liao HYM. 2020. Yolov4: optimal speed and accuracy of object
detection. ArXiv preprint DOI 10.48550/arXiv.2004.10934.

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 26/29

https://doi.org/10.5281/zenodo.6386809
https://doi.org/10.5281/zenodo.6386809
http://dx.doi.org/10.7717/peerj.13779#supplemental-information
http://dx.doi.org/10.7717/peerj.13779#supplemental-information
http://dx.doi.org/10.1111/aje.12565
http://dx.doi.org/10.1046/j.1365-3008.2001.00196.x
http://dx.doi.org/10.1046/j.1365-3008.2001.00198.x
http://dx.doi.org/10.1017/S0952836902211395
http://dx.doi.org/10.1017/S0952836901000309
https://aws.amazon.com/ec2/instance-types
https://aws.amazon.com/ec2/instance-types
http://dx.doi.org/10.48550/arXiv.2004.10934
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

Borrelle SB, Fletcher AT. 2017. Will drones reduce investigator disturbance to surface-nesting
seabirds? Marine Ornithology 45:89–94.

Brownlee J. 2020. How to avoid data leakage when performing data preparation. Available at
https://machinelearningmastery.com/data-preparation-without-data-leakage (accessed 02
August 2021).

Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA. 2020.
Albumentations: fast and flexible image augmentations. Information-an International
Interdisciplinary Journal 11(2):125 DOI 10.3390/info11020125.

Chalmers C, Fergus P, Wich S, Montanez AC. 2019. Conservation AI: live stream analysis for the
detection of endangered species using convolutional neural networks and drone technology.
ArXiv preprint DOI 10.48550/arXiv.1910.07360.

Corcoran E, Winsen M, Sudholz A, Hamilton G. 2021. Automated detection of wildlife using
drones: synthesis, opportunities and constraints. Methods in Ecology and Evolution
12(6):1103–1114 DOI 10.1111/2041-210X.13581.

Duporge I, Isupova O, Reece S, Macdonald DW, Wang T. 2021. Using very-high-resolution
satellite imagery and deep learning to detect and count African elephants in heterogeneous
landscapes. Remote Sensing in Ecology and Conservation 7(3):369–381 DOI 10.1002/rse2.195.

Eikelboom JAJ, Wind J, van de Ven E, Kenana LM, Schroder B, de Knegt HJ, van Langevelde F,
Prins HHT, Altwegg R. 2019. Improving the precision and accuracy of animal population
estimates with aerial image object detection. Methods in Ecology and Evolution
10(11):1875–1887 DOI 10.1111/2041-210X.13277.

Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. Boston: MIT Press.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A,
Bengio Y. 2014. Generative adversarial nets. In: NIPS’14: Proceedings of the 27th International
Conference on Neural Information Processing Systems.

Guirado E, Tabik S, Rivas ML, Alcaraz-Segura D, Herrera F. 2019. Whale counting in satellite
and aerial images with deep learning. Scientific Reports 9(1):1–12
DOI 10.1038/s41598-019-50795-9.

Jewell ZC, Alibhai S, Law PR, Uiseb K, Lee S. 2020.Monitoring rhinoceroses in Namibia’s private
custodianship properties. PeerJ 8(4):e9670 DOI 10.7717/peerj.9670.

Jocher G. 2021. Tips for best training results. Available at https://github.com/ultralytics/yolov5/
wiki/Tips-for-Best-Training-Results (accessed 2 August 2021).

Jocher G, Chaurasia A, Stoken A, Borovec J, NanoCode012, Kwon Y. 2020. Ultralytics/yolov5:
v3.1 – Bug fixes and performance improvements. Available at https://doi.org/10.5281/zenodo.
3908559 (accessed 3 August 2021).

Kellenberger B, Marcos D, Tuia D. 2018. Detecting mammals in UAV images: best practices to
address a substantially imbalanced dataset with deep learning. Remote Sensing of Environment
216(6):139–153 DOI 10.1016/j.rse.2018.06.028.

Kiefer J, Wolfowitz J. 1952. Stochastic estimation of the maximum of a regression function. The
Annals of Mathematical Statistics 23(3):462–466 DOI 10.1214/aoms/1177729392.

Laughing-q. 2021. YOLOv5 network structure. Available at https://blog.csdn.net/Q1u1NG/article/
details/107511465 (accessed 28 Mar 2022).

LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521(7553):436–444
DOI 10.1038/nature14539.

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 27/29

https://machinelearningmastery.com/data-preparation-without-data-leakage
http://dx.doi.org/10.3390/info11020125
http://dx.doi.org/10.48550/arXiv.1910.07360
http://dx.doi.org/10.1111/2041-210X.13581
http://dx.doi.org/10.1002/rse2.195
http://dx.doi.org/10.1111/2041-210X.13277
http://dx.doi.org/10.1038/s41598-019-50795-9
http://dx.doi.org/10.7717/peerj.9670
https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results
https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results
https://doi.org/10.5281/zenodo.3908559
https://doi.org/10.5281/zenodo.3908559
http://dx.doi.org/10.1016/j.rse.2018.06.028
http://dx.doi.org/10.1214/aoms/1177729392
https://blog.csdn.net/Q1u1NG/article/details/107511465
https://blog.csdn.net/Q1u1NG/article/details/107511465
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S. 2017a. Feature pyramid networks
for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 2117–2125.

Lin TY, Goyal P, Girshick R, He K, Dollár P. 2017b. Focal loss for dense object detection.
In: Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE,
2980–2988.

Liu S, Qi L, Qin H, Shi J, Jia J. 2018. Path aggregation network for instance segmentation.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:
IEEE, 8759–8768.

Lürig MD, Donoughe S, Svensson EI, Porto A, Tsuboi M. 2021. Computer vision, machine
learning, and the promise of phenomics in ecology and evolutionary biology. Frontiers in
Ecology and Evolution 9:148 DOI 10.3389/fevo.2021.642774.

MQTT. 2021. MQ telemetry transport-the standard for IoT messaging. Available at https://mqtt.
org/ (accessed 25 July 2021).

Mulero-Pázmány M, Jenni-Eiermann S, Strebel N, Sattler T, Negro JJ, Tablado Z. 2017.
Unmanned aircraft systems as a new source of disturbance for wildlife: a systematic review.
PLOS ONE 12(6):e0178448 DOI 10.1371/journal.pone.0178448.

Mulero-Pázmány M, Stolper R, Van Essen LD, Negro JJ, Sassen T. 2014. Remotely piloted
aircraft systems as a rhinoceros anti-poaching tool in Africa. PLOS ONE 9(1):e83873
DOI 10.1371/journal.pone.0083873.

Neskorozhenyi R. 2021. YOLO dataset tiling script. Available at https://github.com/slanj/yolo-tiling
(accessed 25 July 2021).

Park N, Serra E, Snitch T, Subrahmanian VS. 2015. APE: a data-driven, behavioral model-based
anti-poaching engine. IEEE Transactions on Computational Social Systems 2(2):15–37
DOI 10.1109/tcss.2016.2517452.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T. 2019. Pytorch: an
imperative style, high-performance deep learning library. In: NIPS’19: Proceedings of the 33rd
International Conference on Neural Information Processing Systems. 32.

Penny SG, White RL, Scott DM, MacTavish L, Pernetta AP. 2019. Using drones and sirens to
elicit avoidance behaviour in white rhinoceros as an anti-poaching tactic. Proceedings of the
Royal Society B: Biological Sciences 286(1907):20191135 DOI 10.1098/rspb.2019.1135.

Rajput M. 2020. YOLO V5-explained and demystified. Available at https://pub.towardsai.net/yolo-
v5-explained-and-demystified-4e4719891d69 (accessed 2 August 2021).

Redmon J, Divvala S, Girshick R, Farhadi A. 2016. You only look once: unified, real-time object
detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Piscataway: IEEE, 779–788.

Redmon J, Farhadi A. 2018. Yolov3: an incremental improvement. ArXiv preprint
DOI 10.48550/arXiv.1804.02767.

Reinhard F, Parkan M, Produit T, Betschart S, Bacchilega B, Hauptfleisch ML, Meier P, Joost S,
Tuia D. 2015. Near real-time ultrahigh-resolution imaging from unmanned aerial vehicles for
sustainable land use management and biodiversity conservation in semi-arid savanna under
regional and global change (SAVMAP). Zenodo. Available at https://zenodo.org/record/
1204408.

Ren S, He K, Girshick R, Sun J. 2017. Faster R-CNN: towards real-time object detection with
region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence
39(6):1137–1149 DOI 10.1109/TPAMI.2016.2577031.

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 28/29

http://dx.doi.org/10.3389/fevo.2021.642774
https://mqtt.org/
https://mqtt.org/
http://dx.doi.org/10.1371/journal.pone.0178448
http://dx.doi.org/10.1371/journal.pone.0083873
https://github.com/slanj/yolo-tiling
http://dx.doi.org/10.1109/tcss.2016.2517452
http://dx.doi.org/10.1098/rspb.2019.1135
https://pub.towardsai.net/yolo-v5-explained-and-demystified-4e4719891d69
https://pub.towardsai.net/yolo-v5-explained-and-demystified-4e4719891d69
http://dx.doi.org/10.48550/arXiv.1804.02767
https://zenodo.org/record/1204408
https://zenodo.org/record/1204408
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

Růžička V, Franchetti F. 2018. Fast and accurate object detection in high resolution 4K and 8K
video using GPUs. In: IEEE High Performance extreme Computing Conference (HPEC) ArXiv
preprint 1–7.

San Diego Zoo. 2021. Giraffe cam. Available at https://sdzsafaripark.org/cams/giraffe-cam
(accessed 7 August 2021).

Sasse DB. 2003. Job-related mortality of wildlife workers in the United States, 1937–2000.Wildlife
Society Bulletin 31:1015–1020 DOI 10.2307/3784446.

Shaham TR, Dekel T, Michaeli T. 2019. Singan: learning a generative model from a single natural
image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision ArXiv
preprint 4570–4580.

Skalski P. 2019. Make sense. GitHub. Available at https://github.com/SkalskiP/make-sense/
(accessed 03 August 2021).

Smedt De F, Hulens D, Goedeme T. 2015. Onboard real-time tracking of pedestrians on a UAV.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
ArXiv preprint 1–8.

Solawetz J. 2020. YOLOv5 new version-improvements and evaluations. Available at https://blog.
roboflow.com/yolov5-improvements-and-evaluation/ (accessed 2 August 2021).

Story R. 2013. Folium. Available at https://python-visualization.github.io/folium/index.html
(accessed 25 July 2021).

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. 2016. Rethinking the inception architecture
for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 2818–2826.

Tuia D, Kellenberger B, Beery S, Costelloe BR, Zuffi S, Risse B, Mathis A, Mathis MW,
van Langevelde F, Burghardt T, Kays R. 2022. Perspectives in machine learning for wildlife
conservation. Nature Communications 13(1):792 DOI 10.1038/s41467-022-27980-y.

Ünel FO, Özkalayci BO, Çiğla C. 2019. The power of tiling for small object detection.
In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
Piscataway: IEEE, 582–591.

Wang CY, Liao HYM,Wu YH, Chen PY, Hsieh JW, Yeh IH. 2020. CSPNet. A new backbone that
can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 390–391.

Wich S, Dellatore D, Houghton M, Ardi R, Pin Koh L. 2015. A preliminary assessment of using
conservation drones for Sumatran orang-utan (Pongo abelii) distribution and density. Journal of
Unmanned Vehicle Systems 4(1):45–52 DOI 10.1139/juvs-2015-0015.

Wich SA, Hudson M, Andrianandrasana H, Longmore SN. 2021. Drones for conservation.
In: Wich SA, Piel AK, eds. Conservation Technology. First Edition. Oxford: Oxford University
Press, 35–51.

Witter R, Satterfield T. 2019. Rhino poaching and the ‘slow violence’ of conservation-related
resettlement in Mozambique’s Limpopo National Park. Geoforum 101:275–284
DOI 10.1016/j.geoforum.2018.06.003.

Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. 2017.mixup: beyond empirical risk minimization.
ArXiv preprint DOI 10.48550/arXiv.1710.09412.

Zhang D, Shao Y, Mei Y, Chu H, Zhang X, Zhan H, Rao Y. 2019. Using YOLO-based pedestrian
detection for monitoring UAV. In: Tenth International Conference on Graphics and Image
Processing (ICGIP 2018). 11069.

Hua et al. (2022), PeerJ, DOI 10.7717/peerj.13779 29/29

https://sdzsafaripark.org/cams/giraffe-cam
http://dx.doi.org/10.2307/3784446
https://github.com/SkalskiP/make-sense/
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://blog.roboflow.com/yolov5-improvements-and-evaluation/
https://python-visualization.github.io/folium/index.html
http://dx.doi.org/10.1038/s41467-022-27980-y
http://dx.doi.org/10.1139/juvs-2015-0015
http://dx.doi.org/10.1016/j.geoforum.2018.06.003
http://dx.doi.org/10.48550/arXiv.1710.09412
http://dx.doi.org/10.7717/peerj.13779
https://peerj.com/

	Protecting endangered megafauna through AI analysis of drone images in a low-connectivity setting: a case study from Namibia
	Introduction
	Methods
	Results
	Discussion
	Conclusions
	flink6
	References

